An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data
نویسندگان
چکیده
In this study, an improved Data INterpolating Empirical Orthogonal Functions (DINEOF) algorithm for determination of missing values in a spatio-temporal dataset is presented. Compared with the ordinary DINEOF algorithm, the iterative reconstruction procedure until convergence based on every fixed EOF to determine the optimal EOF mode is not necessary and the convergence criterion is only reached once in the improved DINEOF algorithm. Moreover, in the ordinary DINEOF algorithm, after optimal EOF mode determination, the initial matrix with missing data will be iteratively reconstructed based on the optimal EOF mode until the reconstruction is convergent. However, the optimal EOF mode may be not the best EOF for some reconstructed matrices generated in the intermediate steps. Hence, instead of using asingle EOF to fill in the missing data, in the improved algorithm, the optimal EOFs for reconstruction are variable (because the optimal EOFs are variable, the improved algorithm is called VE-DINEOF algorithm in this study). To validate the accuracy of the VE-DINEOF algorithm, a sea surface temperature (SST) data set is reconstructed by using the DINEOF, I-DINEOF (proposed in 2015) and VE-DINEOF algorithms. Four parameters (Pearson correlation coefficient, signal-to-noise ratio, root-mean-square error, and mean absolute difference) are used as a measure of reconstructed accuracy. Compared with the DINEOF and I-DINEOF algorithms, the VE-DINEOF algorithm can significantly enhance the accuracy of reconstruction and shorten the computational time.
منابع مشابه
Investigation of Long Term Trend of Spatio-Temporal changes of Sea Surface Temperature in Oman Sea
Considering the vast application of sea surface temperature in climatic and oceanic investigations, this parameter was studied in Oman Sea from 1986 to 2015. The SST was surveyed using trend analysis and Global and local Moran’s I spatial autocorrelation. In trend analysis, the Mann-Kendall test was used to determine the trend of SST changes and the Sen's Estimator method was used to examine th...
متن کاملAn Improved Methodology for Filling Missing Values in Spatio-Temporal Climate Dataset Application to Tanganyika Lake Dataset
In this paper, an improved methodology for the determination of missing values in a spatio-temporal database is presented. This methodology performs denoising projection in order to accurately fill the missing values in the database. The improved methodology is called EOF Pruning and it is based on an original linear projection method called Empirical Orthogonal Functions (EOF). The experiments...
متن کاملSpatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran
Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...
متن کاملDINEOF reconstruction of clouded images including error maps – application to the Sea-Surface Temperature around Corsican Island
We present an extension to the Data INterpolating Empirical Orthogonal Functions (DINEOF) technique which allows not only to fill in clouded images but also to provide an estimation of the error covariance of the reconstruction. This additional information is obtained by an analogy with optimal interpolation. It is shown that the error fields can be obtained with a clever rearrangement of calcu...
متن کاملSpatio-temporal filling of missing points in geophysical data sets
The majority of data sets in the geosciences are obtained from observations and measurements of natural systems, rather than in the laboratory. These data sets are often full of gaps, due to to the conditions under which the measurements are made. Missing data give rise to various problems, for example in spectral estimation or in specifying boundary conditions for numerical models. Here we use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016